The Mathematics of Call Centre Staffing:
Managing a Workforce by the Numbers
Overview

Running a successful call centre means managing by the numbers and there is no more important number than having the exact right number of people in place to respond to customer contacts. Too many staff results in excessive labor costs, while understaffing results in poor service, unhappy customers, lost business, and overworked staff.

This paper will present the mathematics of call centre staffing. Part 1 will outline the fundamental steps of calculating call centre staff. Part 2 will discuss the many tradeoffs to consider in developing a staffing plan that maximises staff and customer satisfaction while minimising operating cost.
Part 1: The Basics of Calculating Call Centre Staff

Determining Staff Workload
The number of staff needed is a function of staff workload and service goals. Staff workload is made up of two components – call volume and average handle time (AHT) – both outcomes of the forecasting process. Workload is typically broken down into either hourly or half-hourly segments, depending upon how staff schedules will later be designed (to start every 60 minutes or 30 minutes).

Workload may be expressed in various time increments as well. AHT may be expressed in seconds or minutes (for example, an AHT of 180 seconds or 3 minutes), meaning resulting workload may be expressed in either seconds or minutes. It is also common to see workload expressed as the number of hours of work to do in a one-hour timeframe. For example, if a call centre expects to receive 400 calls between 4:00 and 5:00pm and the calls take 180 seconds each to handle, then the workload would be 72,000 seconds, 1200 minutes, or 20 hours of workload. Expressing workload in terms of hours of work to do in a one-hour timeframe is a useful measure as it is easier to relate to the number of staff hours needed to accomplish the work.

Copyright © 2011 The Call Center School, LLC
Understanding Call Arrival Patterns

Call centre staffing represents a unique kind of problem in the sense that the work to do is out of the control of the centre and it arrives in a random, unpredictable pattern. It’s very different than work in other parts of the business. For example, in a regular production environment – like processing clerical tasks or participating in assembly line work – the work tasks are sequential. They arrive one behind the other and a person can move from one to the next in a smooth fashion, handling a full hour’s worth of work within an hour timeframe. With this kind of work, 20 hours of workload would simply require 20 people in place to complete the work in one hour.

However, applying those same numbers in a call centre scenario will yield a different staff requirement. Assume the call centre expects to receive 400 calls in the same hour representing 20 hours of telephone workload. The work cannot be handled in the same way. At 4:05, there may be 25 calls arriving, meaning all 20 agents are busy, with 5 calls waiting in queue. Then at 8:15, there may only be 12 calls in progress, meaning 8 staff are idle. Those 8 people won’t be able to accomplish a full hour’s work, simply because of the way the calls have arrived. In an incoming call centre, the work doesn’t arrive in a back-to-back fashion. Rather, the work arrives whenever customers decide to place calls. Therefore, there will be busy, backed-up periods at some points during the hour and likewise there will be periods of idle time where staff are just waiting on the next call to arrive. When this idle, non-productive time is added to the actual call workload, the result is more than 20 hours of time. Therefore, with randomly arriving telephone workload, a call centre will always need more staff in place than the actual hours of work to do.

In the example with 20 hours of call workload to accomplish, the fundamental rule of call centre staffing indicates that more than 20 staff would be required to accomplish the work. But how many extra staff would be needed? For 20 hours of workload, will 21 staff be required? 22 staff? 25 staff? The answer is ... it depends. The number of staff needed depends on the speed of answer the call centre wishes to deliver. Obviously, the more staff available, the faster the speed of answer will be. The fewer the staff, the longer the caller will wait.

Defining Service Goals

There are two primary ways of defining speed of answer goals. The most common approach is a two-part definition called service level. The other definition is a simple average delay time called average speed of answer or ASA.

Service level is the most common way to define speed of answer in a call centre. The level denotes a percentage of calls to be handled within a defined number of seconds. It is typically stated as x% of calls handled in y seconds or less, with a common service level goal in the call centre industry being to answer 80% of calls in 20 seconds or less. (Note: This number is not to be considered an industry “standard” that centres should strive to achieve. It is just a common goal for many.)

Another common way to describe queue time or delay time is average speed of answer or ASA. This statistic represents the average delay of all calls for the period, including those calls that experience no queue at all. For example, if half the calls go into queue and wait an average of 60 seconds, and the other half go to an agent immediately and wait 0 seconds, the ASA would be 30 seconds.

About two-thirds of call centres use service level as their primary speed-of-answer measure with the other third using ASA. Service level is generally preferred since it provides more of a distribution view of the caller experience rather than a simple average. Regardless of which measure is used as the goal, it’s important to consider the goal carefully as it will drive the number of staff – the most expensive item in the call centre operating budget. There is absolutely no such thing as an “industry standard” for speed of service. Each call centre’s service goal should be based on many different factors, including the following:

Customer expectations. First and foremost, the customer contact strategy, including the setting of speed of answer goals, should be based on customer needs and expectations. These expectations are today being based on a myriad of service experiences, and it is important to consider these in defining a service goal to meet customer expectations. Customers should be surveyed regularly to see what their service expectations are in
terms of both quality and speed of service. It may be appropriate to have faster speed of answer goals for some customers than for others rather than having one goal that applies to all calls.

Competitive influences. Certainly, most call centres will want to also benchmark against what similar companies are doing and how quickly they are responding to customer contacts. To some degree, the call centre may base its speed of answer goals upon how captive its customer base is. If part of a highly competitive industry where callers have many options for service, the call centre may wish to set more aggressive service goals, while those with a monopoly on a product or service may settle for less strenuous ones. Even in a single centre, multiple situations may exist. For example, an automobile insurance company may want fast speed of answer on the sales lines, but not such an expensive goal for staffing in the claims processing department.

Market position and branding. In some cases, speed of answer may support the overall brand image and reputation of a company. Those organisations known for speedy service may wish to set high service level goals to support the company’s brand image.

Budgetary guidelines. Ideally, service objectives should drive staffing requirements and the budget. But in reality, service objectives may be driven to some degree by available budget pounds. While a call centre might like to deliver a 90% in 10 seconds speed of answer, there may simply be insufficient budget to support such a high goal, and therefore the objectives should be set to a level that is actually attainable by the centre.

There are many factors that should be considered in establishing a speed of answer goal and careful consideration should be given to this number since it dictates resource requirements and a significant portion of the call centre’s operating budget. Careful thought should be given to this objective on a regular basis to ensure the objectives make sense in terms of budget pounds, customer expectations, and support of the company’s mission and goals. Too often call centres set service goals and then never think about them again even as the business grows and changes. It is recommended that service objectives be evaluated every year as staffing budgets are reviewed.

Applying a Call Centre Staffing Model

Once workload has been calculated and a speed of answer objective established, staffing numbers can be calculated. Due to the random arrival of calls and the fact that some callers will find no agent available, it is not simple to match workload with a given number of staff. Finding the right number of staff involves the use of detailed mathematical models that replicate the unique staffing issues of the call centre.

There are several mathematical models that are used in telephone traffic engineering applications. Some of these are particularly suited to the unique operational aspects of a call centre. The primary telephone traffic model associated with call centre operations is called Erlang C. (Note: For a discussion of additional mathematical models and their application in call centre operations, refer to Call Centre Staffing: The Complete, Practical Guide to Workforce Management.)

The assumptions behind the Erlang C model are that the events (or calls) arrive randomly within the work period (hour or half-hour). The Erlang C model also assumes that if a call attempt is made and no resource (in this case, a call centre agent) is in place to handle the call, the call will go into a queue and wait there until there is a resource to handle it. It is the model used most frequently in a simple call centre scenario where a caller is asked to hold for the first available agent when entering the queue.

The formula for Erlang C is outlined below. As you can see, it’s a complicated one that does not lend itself easily to computations with a pencil and a calculator! However, it can be programmed into Excel for calculation purposes, or there are a multitude of Erlang calculator tools available. One popular one is The Call Center School’s free QuikStaff® tool, available at www.quikstaff.com.
Let’s take a look at the Erlang C model applied to the earlier example of 20 hours of workload. As you can see in the table, if the service goal is to answer calls with an average wait time of no more than 30 seconds, then 23 staff would be required and 75% of the calls would be handled within this threshold of time.

<table>
<thead>
<tr>
<th>Workload</th>
<th>Staff</th>
<th>ASA</th>
<th>Service Level (in 30 sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 hours</td>
<td>21</td>
<td>137 sec</td>
<td>36%</td>
</tr>
<tr>
<td>20 hours</td>
<td>22</td>
<td>51 sec</td>
<td>59%</td>
</tr>
<tr>
<td>20 hours</td>
<td>23</td>
<td>25 sec</td>
<td>75%</td>
</tr>
<tr>
<td>20 hours</td>
<td>24</td>
<td>13 sec</td>
<td>85%</td>
</tr>
<tr>
<td>20 hours</td>
<td>25</td>
<td>7 sec</td>
<td>91%</td>
</tr>
</tbody>
</table>

One assumption within the Erlang C model is that all calls that go into queue will wait there indefinitely until a resource becomes available to process the call. It does not account for the fact that some calls may abandon the queue if the delay time is too long. Since some calls are indeed likely to abandon, there will actually be less workload to handle and queue times are shorter as a result.

The fact that Erlang C does not incorporate abandoned calls into the calculation of delays is illustrated by the numbers in the table below. In this example, notice that for the 9:00 time period, the forecast of calls was 173 and 180 actually arrived. Average handle time and staff numbers were perfectly on target. More calls arrived than were predicted; yet the actual service level as shown on the ACD report is even better than the forecasted service level. This is because the forecast was based on an Erlang C model in which no calls abandon, when in reality some actually do.

Some might argue that Erlang C is not a reliable model to use in a call centre because abandoned calls should be taken into account. There are several schools of thought on this argument, but most would agree that taking abandons into account when determining staff numbers is risky. For example, if 10% of calls abandon, and a call centre only staffs for ninety percent of the calls, fewer staff would be put in place. But if the 10% who abandon are doing so based on poor service, then reducing the staff to handle the reduced calls will only result in lower service levels and more abandons. Should the callers exhibit greater than usual tolerance for waiting and decide not to abandon, the service level will be considerably worse than the forecast. It gets to be a vicious cycle at some point, so beware of modifying the Erlang model to account for abandoned calls when calculating staff requirements. Erlang C is the recommended and most widely used model because it shows what would happen if all callers did indeed choose to wait and staffs accordingly.

In explaining the differences between service level predictions by half-hour and what the ACD shows as actual numbers, look first to abandonment levels. If they’re high, there will be a sizable variation between forecast and actual numbers. Reducing the number of abandons through shorter delays, better placement of delay announcements, or more effective content in the recordings will bring numbers closer to a perfect match.

The other limitation that should be mentioned concerning Erlang C is its applicability in a more complex staffing and scheduling scenario. It was stated earlier that it is the recommended technique in a simple...
queue scenario. Once complexities like queuing to multiple groups and skill-based routing are introduced into the call centre, the simple Erlang C model will need to be replaced by a more sophisticated modeling technique.

Forecast Call and Service Level:

<table>
<thead>
<tr>
<th>Time of Day</th>
<th>Number of Calls</th>
<th>Handle Time</th>
<th>Number of Staff</th>
<th>Service Level</th>
<th>Number of Calls</th>
<th>Handle Time</th>
<th>Number of Staff</th>
<th>Service Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>125</td>
<td>240</td>
<td>20</td>
<td>78%</td>
<td>128</td>
<td>240</td>
<td>20</td>
<td>82%</td>
</tr>
<tr>
<td>8:30</td>
<td>148</td>
<td>240</td>
<td>23</td>
<td>73%</td>
<td>154</td>
<td>240</td>
<td>23</td>
<td>75%</td>
</tr>
<tr>
<td>9:00</td>
<td>173</td>
<td>240</td>
<td>27</td>
<td>80%</td>
<td>180</td>
<td>240</td>
<td>27</td>
<td>82%</td>
</tr>
</tbody>
</table>

Actual Calls and Service Level:
Part 2: Understanding Call Centre Staffing Tradeoffs

In determining the “just right” number of staff in the call centre, there are many trade-offs to consider. In order to evaluate these trade-offs, it’s important to understand the relationship between staffing and service, as well as the effect that staffing levels have on productivity levels. And every staffing decision should certainly be evaluated in terms of its cost implications. Let’s explore these three important service, productivity, and cost tradeoffs.

Service Implications

As seen in the previous Erlang C table, it is clear that adding staff improves service and subtracting staff causes service to worsen. But perhaps less obvious, and even more important, is the degree of change in service as staff are added or subtracted.

As seen in the staffing scenario below, with 600 calls per hour and an average handle time of 300 seconds, the workload is 50 hours or erlangs (the number of hours of work to do in a one-hour period) To meet a service goal objective of an ASA of <30 seconds, 55 staff would be required. Now look at what the impact would be of adding or subtracting staff in this scenario.
Sample Staffing Scenario

<table>
<thead>
<tr>
<th>Hourly Call Volume</th>
<th>Average Handle Time</th>
<th>Staff Workload (in erlangs)</th>
<th>Number of Staff</th>
<th>Service Level (in 30 sec)</th>
<th>Delayed Portion</th>
<th>Delay of Delayed Calls</th>
<th>ASA (in sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>300 sec</td>
<td>50 hours</td>
<td>51</td>
<td>24%</td>
<td>84%</td>
<td>300 sec</td>
<td>252 sec</td>
</tr>
<tr>
<td>600</td>
<td>300 sec</td>
<td>50 hours</td>
<td>52</td>
<td>43%</td>
<td>70%</td>
<td>150 sec</td>
<td>105 sec</td>
</tr>
<tr>
<td>600</td>
<td>300 sec</td>
<td>50 hours</td>
<td>53</td>
<td>57%</td>
<td>58%</td>
<td>100 sec</td>
<td>58 sec</td>
</tr>
<tr>
<td>600</td>
<td>300 sec</td>
<td>50 hours</td>
<td>54</td>
<td>68%</td>
<td>47%</td>
<td>75 sec</td>
<td>35 sec</td>
</tr>
<tr>
<td>600</td>
<td>300 sec</td>
<td>50 hours</td>
<td>55</td>
<td>77%</td>
<td>38%</td>
<td>61 sec</td>
<td>23 sec</td>
</tr>
<tr>
<td>600</td>
<td>300 sec</td>
<td>50 hours</td>
<td>56</td>
<td>83%</td>
<td>31%</td>
<td>48 sec</td>
<td>15 sec</td>
</tr>
<tr>
<td>600</td>
<td>300 sec</td>
<td>50 hours</td>
<td>57</td>
<td>88%</td>
<td>25%</td>
<td>40 sec</td>
<td>10 sec</td>
</tr>
<tr>
<td>600</td>
<td>300 sec</td>
<td>50 hours</td>
<td>58</td>
<td>91%</td>
<td>19%</td>
<td>37 sec</td>
<td>7 sec</td>
</tr>
<tr>
<td>600</td>
<td>300 sec</td>
<td>50 hours</td>
<td>59</td>
<td>93%</td>
<td>15%</td>
<td>33 sec</td>
<td>5 sec</td>
</tr>
<tr>
<td>600</td>
<td>300 sec</td>
<td>50 hours</td>
<td>60</td>
<td>95%</td>
<td>12%</td>
<td>29 sec</td>
<td>3.5 sec</td>
</tr>
</tbody>
</table>

As each additional agent is added, service improves. Increasing staff from 55 to 56 moves the ASA from 23 seconds to 15 seconds, an 8-second improvement. The 57th agent would improve ASA to 10 seconds (a 5-second improvement); the 58th agent would drop ASA to 7 seconds (a 3-second improvement); the 59th agent would improve ASA to 5 seconds (a 2-second improvement). Every time an additional person is added, service improves, but it does so in smaller increments each time. This “law of diminishing returns” means that at very good service levels, there is little impact of adding an additional person.

On the other hand, look at what happens as staff members are subtracted. Decreasing staff from 55 to 54 staff moves ASA from 23 seconds to 35 seconds (a 12-second increase). Dropping to 53 staff would result in a 58-second ASA (a 23-second change), 52 staff would yield a 105-second ASA (a 57-second increase), and dropping to 51 staff would mean ASA would worsen to 252 seconds (a 147-second jump). Each time an agent is subtracted, service worsens, and it does so by a greater amount each time. The incremental change gets larger and larger as the number of agents approaches the hours of work to do.

This relationship of staff numbers and ASA is shown in the graph below.

![Staffing and Service Relationship](image)

Note that as staff numbers decrease not only do more calls go into queue, but the actual wait time in the queue increases as well. For example, with 55 staff in place, 38% of the callers will go into queue, with the average queued call waiting 61 seconds (delay of delayed calls), yielding an ASA of 23 seconds. With 54 staff, 47% of calls will go into queue, and the wait time will be 75 seconds on average, yielding an ASA of 35 seconds.
seconds. Therefore, the impact on ASA is driven by not just more calls going into queue, but the delay time there as well. This combination contributes to the exponential rise in ASA as the number of staff decreases.

A question frequently asked by agents in a call centre is “What difference does just one person make on service to customers?” And the answer is … “It depends.” The actual impact on service depends upon where the call centre is in the staffing and service curve. If staffing levels are high and ASA is low, then adding or subtracting just one person does not have much effect on service. As evidenced in the table, the difference between 57 staff and 58 staff in this scenario is only 3 seconds – a difference probably not noticeable to callers.

On the other hand, if ASA is in the medium to high range already, then taking just one more person off the phones could affect service dramatically. Look at what happens in the table when staff numbers dropped from 52 to 51 staff during the hour – a difference in ASA of 147 seconds! Just one person (in this example, representing only 2% of the group) can have a tremendous effect on service. The good news is that adding a person at this level has a dramatically positive impact. Therefore, call centres delivering long delay times to customers can alter the service picture in a big way by getting just one more person on the phones.

It is key to understand that this impact is a function of the size of the group of agents who are handling a specific call type. Large centres with 300+ agents think that their size insulates them from these impacts. But often, even the large centres break down the work teams into smaller groups focused on specific call types, so the impacts are still keenly felt.

Productivity and Occupancy

Another critical relationship to understand is the relationship between staffing and agent occupancy. In any staffing scenario, adding more staff means that more people will be handling a given workload, so that each individual agent is less busy. As staff members are taken away, fewer people are left to accomplish the work, and each person has to work harder.

The measure of how busy the agents are at processing call workload is referred to as agent occupancy. Occupancy compares the time the agent is actually busy on a call or in after-call work to the time spend idle waiting on the next call to arrive. The calculation is a simple one -- workload hours divided by staff hours. In other words, if there is 50 hours of work in the hour and 55 agents are available to handle calls, they will all be occupied on calls 91% of the time and sitting in idle state the other 9% of the hour.

In the 50-hour workload scenario, the last column shows the level of agent occupancy associated with varying staffing numbers.

Relationship of Staffing and Agent Occupancy

With only 52 agents handling 50 hours of workload, the staff will be busy 96% of the time. In other words, there will only be 4% idle time between calls (only 2.4 minutes out of the hour). On the other hand, with 58 people working, the agents would be busy only 86% of the time they are logged in as available with a 14% “breather” between calls.

In staffing a call centre, it is important to note this occupancy number. With the efficiencies inherent in larger call centres (to be discussed below), it is not uncommon to see agent occupancy levels at 95% or above. On the other hand, agent occupancy levels in a smaller centre may only be at the 70% level, while meeting the same service level goal as the larger centre. This difference is illustrated in the table on the next page.

Effect of Group Size on Agent Occupancy Level

First compare the smaller group depicted in the upper portion of the table with the medium-sized group in the middle of the table. In the smaller group that receives 200 calls or 10 hours of workload, 13 agents are required to meet an 80% in 20 seconds service level. The resulting agent occupancy is 10/13 or 77%. In the group that receives four times as many calls, or 40 hours of workload, 45 staff are needed to meet the 80% in 20 seconds goal. The resulting level of agent occupancy for this group is 40/45 or 89%. Even though the two groups are staffed to meet the same 80% in 20 seconds service goal, the occupancy levels of the two groups will be different. If the smaller group’s goal was to have an occupancy level equivalent to the larger group, that could be accomplished by reducing the number of staff from 13 to 11. By doing so, a smaller group would be handling the work and each person
would be busier. But reducing the number of staff would mean lowering service level, in this case from the 80% goal to only 39% of calls handled within the desired wait time.

As seen in this example, larger groups will enjoy a higher productivity or occupancy level, simply because of the way the work presents itself. With double the calls of the medium-sized group, the larger group depicted in the bottom portion of the table, has an agent occupancy of 92% when staffed to meet the same 80% in 20 seconds service goal. Care should be taken in staffing larger groups to ensure that productivity levels are not forced too high.

<table>
<thead>
<tr>
<th>Calls per Hour</th>
<th>Handle Time</th>
<th>Workload (in erlangs)</th>
<th>Number of Staff</th>
<th>Service Level (in 20 sec)</th>
<th>Agent Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>180 sec</td>
<td>10 hours</td>
<td>11</td>
<td>39%</td>
<td>90%</td>
</tr>
<tr>
<td>200</td>
<td>180 sec</td>
<td>10 hours</td>
<td>12</td>
<td>64%</td>
<td>83%</td>
</tr>
<tr>
<td>200</td>
<td>180 sec</td>
<td>10 hours</td>
<td>13</td>
<td>80%</td>
<td>77%</td>
</tr>
<tr>
<td>800</td>
<td>180 sec</td>
<td>40 hours</td>
<td>45</td>
<td>80%</td>
<td>89%</td>
</tr>
<tr>
<td>800</td>
<td>180 sec</td>
<td>40 hours</td>
<td>46</td>
<td>86%</td>
<td>87%</td>
</tr>
<tr>
<td>800</td>
<td>180 sec</td>
<td>40 hours</td>
<td>47</td>
<td>90%</td>
<td>85%</td>
</tr>
<tr>
<td>1600</td>
<td>180 sec</td>
<td>80 hours</td>
<td>87</td>
<td>80%</td>
<td>92%</td>
</tr>
<tr>
<td>1600</td>
<td>180 sec</td>
<td>80 hours</td>
<td>88</td>
<td>88%</td>
<td>91%</td>
</tr>
<tr>
<td>1600</td>
<td>180 sec</td>
<td>80 hours</td>
<td>89</td>
<td>91%</td>
<td>90%</td>
</tr>
</tbody>
</table>

Most call centres have found that a reasonable level of agent occupancy is somewhere between 80% and 90%. When occupancy levels go much higher than 90%, there is very little time between incoming calls to take a “breather” and prepare for the next one. If this back-to-back calling continues for any length of time, agents will begin looking for ways to get a “breather” between calls. They may extend talk time to avoid taking the next call, stay in after-call work mode longer than needed, go into unavailable mode, or make an outbound call – anything to avoid taking the next call. When one agent does this, the reduction in staff simply means that everybody else is just that much busier. Agent occupancy continues to rise and service levels drop, creating a cycle that is difficult to stop past a certain point. Therefore, when calculating staff requirements, it is important to staff so that agent occupancy levels do not exceed reasonable thresholds for more than three or four half-hour periods, or agents will begin to exhibit non-desirable behaviors in the short-term, with burn out and/or turnover to be expected in addition to service problems.

Economies of Scale
The previous table illustrates a critical phenomenon in call centre staffing related to agent group size. The smaller group receiving 200 calls per hour, or 10 hours of work, requires 13 agents to meet the service goal. The medium-sized group receives four times the amount of work, yet four times the number of staff (4 x 13 = 52 staff) is not needed. The service goal can be met with 45 staff instead of 52 staff. Likewise, when comparing the middle group to the large group that receives twice as many calls, twice as many staff (2 x 45 = 90 staff) is not needed. The service goal can be met with 87 instead of 90 agents.

Why are the larger groups able to staff with a lower staff-to-workload ratio? While there may indeed be differences in technologies, operating processes, and
skills between small and large groups, these reasons do not explain the efficiencies. Rather, it is a situation in which the agents in larger groups simply have an opportunity to handle more calls during the period of time they’re working. With a larger volume of calls, there is a greater likelihood that when an agent is finished with one call, there is another one arriving immediately. There is less “down time” waiting for a call to come in and the larger volume of calls represents a “smoother” calling pattern. With each agent presented with and capable of handling more calls during the hour, each person can simply be more efficient, and the call centre won’t need as many people to accomplish the work. Each person will be busier or more “occupied” with calls and therefore fewer staff compared to the hours of workload will be needed. This Phenomenon is referred to as the pooling principle or economies of scale.

Consolidation Opportunities

These economies of scale should be taken into account when staffing a call centre, particularly when staffing for multiple groups or multiple call centres. For example, suppose a call centre has different groups of customer service agents assigned to different types of products. Group A handles “gadgets” questions and Group B handles inquiries about “widgets”. Each group receives 200 calls per hour that take three minutes each to handle (or 10 erlangs of workload). As illustrated in Exhibit 5.5, to meet a service goal of an ASA of 20 seconds or less, each group would require 13 staff, or a total of 26 agents for the two groups.

Agent Group Consolidation Example

<table>
<thead>
<tr>
<th>Calls per Hour</th>
<th>Handle Time</th>
<th>Workload (in erlangs)</th>
<th>Number of Staff</th>
<th>ASA</th>
<th>Agent Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>180 sec</td>
<td>10 hours</td>
<td>13</td>
<td>17 sec</td>
<td>77%</td>
</tr>
<tr>
<td>400</td>
<td>180 sec</td>
<td>20 hours</td>
<td>24</td>
<td>13 sec</td>
<td>83%</td>
</tr>
</tbody>
</table>

If the agents in this centre were cross-trained to handle both “gadgets” and “widgets” calls, and all calls came into one queue, only 24 staff would be needed. The benefits of this consolidation could be viewed several different ways. Two fewer agents would be required, saving salary and benefits costs should these two positions be eliminated. Or perhaps these staff would stay on the payroll, but with fewer staff needed on the phones at a given time, more time would be available to rotate agents in and out of training and quality programs. Alternatively, all 26 agents could take calls, which would result in better service (an ASA of 4 seconds versus an average of 15 seconds). Or, the same staff could provide the same level of service, and simply handle more workload with the added available time, meaning more calls or a longer handle time.

Of course, to accomplish the consolidation mentioned above, cross-training would need to occur in order for all agents to become universal agents who could handle both types of calls. If the product lines are similar, this training might be accomplished easily. On the other hand, if the applications are very different, the cost of training might outweigh the benefits to be gained.

Anytime a consolidation of this type is considered, the costs of consolidation must be compared against the benefits. In weighing the benefits, one should look realistically at the expected end result. In this scenario, for example, the agents might be cross-trained to handle another call type but it may take a considerable amount of time for them to become fully competent with
the new skill. If handling a mix of calls causes handle times to increase from 180 seconds to 200 seconds per call, the savings anticipated from the consolidation might be wiped out entirely. Instead of the anticipated savings of 26 staff to 24 staff, an extended handle time could increase the staff needed to 27 staff, not to mention the service impact on the customers by having their calls handled by “generalists” instead of “specialists”.

Cost Impact
In addition to the service and occupancy tradeoffs discussed above, another consideration in arriving at the “just right” staff number is related to cost. There are cost implications of any staffing configuration and it is important to consider these in making staffing and budget decisions.

The number of staff in place during a given period has a direct impact on how long callers will wait in queue. The fewer staff in place, the longer the delay, and the higher the occupancy level of the staff. In addition to these two factors, the staffing design (and the resulting delay) also has an impact on cost, especially if the call centre is paying for the call through use of a toll-free service. In this case, the centre must consider not just the cost of talk time with the caller, but also the time the caller spends in queue waiting to be answered, since the billing clock is running during that time as well.

There are four main components of a call, as illustrated on the right side.

<table>
<thead>
<tr>
<th>Ring Time</th>
<th>Delay Time</th>
<th>Talk Time</th>
<th>After-Call Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 sec</td>
<td>30 sec</td>
<td>280 sec</td>
<td>20 sec</td>
</tr>
</tbody>
</table>

The average handle time used to calculate staff requirements is made up of only talk time and after-call work (280 seconds talk + 20 seconds after-call work = 300 seconds per call). The incoming telephone service is being used during the ring time, the time the caller spends in queue waiting to be answered, and throughout the conversation (and during connection to an IVR if one is used). These first three components (ring + delay + talk) are used to calculate trunk or network requirements and two of these elements (delay + talk) must be factored in to calculate the telephone cost of each call.

Consider the following example that illustrates the impact of staffing on the overall cost of delivering service. In this example, the call centre expects to receive 385 calls per hour and wishes to answer these calls with an ASA of 30 seconds or less. This workload would require 36 staff to be available, as illustrated below. However, if some staff are missing and the delays increase, there is an impact on cost as well.

Understaffing Scenario
Consider what would happen if the three people were missing. As shown in the table, with 33 staff handling the 385 calls, the delay would increase from the desired 30 seconds to 268 seconds per call.

Not only does this understaffing situation cause a problem with respect to service (a delay of over four minutes compared to the goal of a half-minute) and occupancy (a reasonable 88% increasing to 97%), but it adds costs as well. Simply adding an additional 238 seconds of delay time to each of the 385 calls results in an approximate additional telephone cost of £27 for this hour alone (€0.02 per minute x 1527 minutes additional delay time). Several hours of understaffing per day can easily add hundreds of pounds of cost each day.

In this example, there are additional costs that should be considered in terms of the understaffing situation.
These costs include, but are not limited to, the following:

- If delay times increase to 268 seconds from a previous 30 seconds, callers are likely to complain, driving up call handle time.
- With only 33 staff in place, occupancy levels would be at 97%, meaning that staff would likely spend longer in talk time or after-call work, driving up call handle time even further.
- If occupancy levels remain at 97%, agents are likely to burn out quickly and may leave the centre. Turnover costs may include recruiting and screening costs, training costs, and additional supervisory costs, to name a few.
- Poor service levels may result in lower customer satisfaction and reduced customer retention. The value of these lost customers’ transactions should also be considered a cost to the centre.
- Quality is likely to suffer. Overworked staff will make mistakes, resulting in repeat calls or re-work of other tasks in the centre.

Clearly, there are many costs associated with understaffing, and any staffing design should consider these costs. If the same money is to be spent on either higher telephone costs for long delays to give poor service or spent on additional labor cost to give good service, it seems like the latter is a better choice. However, when the telecommunications budget is not part of the call centre’s budget, this correlation is often missed.

Revenue Call Centres

While most call centres use the steps outlined above in calculating the number of staff needed to meet a specified speed-of-answer goal, there is another method of determining staff numbers that is worth considering for call centres that make money when answering calls. Determining the optimal number of staff in a revenue-generating call centre such as a catalog or reservations centre involves a relatively simple cost calculation. This approach takes into account overall costs of providing different levels of service to pinpoint the combination that maximises the bottom line.

The economic components to be considered in the revenue optimisation approach are:

- **Potential Revenue.** The average revenue per call multiplied by the number of calls forecast for the period. Obviously, call centres taking catalog orders or reservation will have precise measures of this monetary value per call, while centres oriented more towards service and support rather than sales may have a more difficult time estimating this “value” per call.
- **Staffing Cost.** Fully loaded hourly staffing cost including salary, benefits, supervision, equipment, and overhead.
- **Telephone Cost.** Average cost/hour of answering calls, including long-distance and local charges.
- **Abandoned Call Cost.** The cost of lost calls. Ignoring abandoned calls is not a “neutral” act. Consider the lost revenue of calls waiting too long in queue, based on caller tolerance levels and associated abandon rates.

Once the value of all these numbers has been determined, the exact number of staff needed to maximise net revenues of the centre can be calculated. In optimising the bottom line, simply seek to balance the cost of adding staff with the increased revenue those staff will be able to generate. Up to a certain point, revenue generated by additional staff will exceed their additional cost. Beyond that number, the additional cost exceeds their revenue.

Clearly, in a call centre where each call adds revenue to the bottom line, take time to consider staffing to the point at which net revenue (and therefore profitability) is maximised. This approach is particularly effective in helping to cost-justify additional staff even during periods when hiring decisions are closely scrutinised. This is also an effective method to use in determining what the day-to-day service level goal ought to be.

Summary

One of the most important functions in the call centre is workforce planning. Getting the “just right” number of staff in place to respond to customer contacts is critical to call centre success. Having too many people in place in a given hour results in excessive labour costs and lower overall productivity. On the other hand, having too few people in place can seriously impact service to customers, overload staff, and drive up phone costs. It’s imperative to put proper staffing models in place to ensure that the call centre has the right number of “bodies in chairs” at all times.
When evaluating this proper number of staff, always consider a staffing decision from the perspective of the three major call centre stakeholders – customers, agents, and senior management. Evaluate the impact that adding or subtracting staff will have on queue times and acceptable service delivery to callers. Consider what staffing levels will mean in terms of the workload distribution and whether or not the resulting occupancy level results in too much idle time between calls or a level that’s high enough to lead to agent stress and burnout. Finally, consider senior management’s point of view with an eye to bottom-line costs. Consider not just the cost of labor, but also telephone delay costs and other hidden costs that may increase with lower staffing numbers.

Understanding and calculating these tradeoffs will ensure informed workforce planning decisions. Getting this “just right” number of staff in place will provide the foundation for successful call centre management by the numbers.
Part 3: Supporting Tools and Resources

While calculating staff requirements is a fairly straightforward process for one hour of a workday, when you multiply that by the many hours in the day, days in the week, and weeks in a year, the calculations can be a bit overwhelming. Add to this the need to make good estimates of how many calls you expect to receive each hour. And then there’s the need to take all these staff requirements and formulate them into efficient work schedules and manage them on a daily basis.

That’s where automated workforce management software comes into play. By automating and optimising the forecasting, staffing, scheduling, and daily management process, you can match your workforce to the workload effectively to maximise service and minimise cost.

InVision Software has all the elements you need to make the most of your workforce planning and management efforts. Our automated WFM tools
address all the critical components in the staffing process:

Workload and Staffing Forecasts – Know how many calls to expect along with the number of staff needed with what skills

Work Schedule Creation – Get exactly the right number of people in place at the right time to maximise the personnel resource

Time Management – Administer employee’s work time accounts to manage paid and unpaid time

Analysis and Monitoring – Evaluate whether your results match your plan with information to take quick actions if deviations occur

Automating these workforce management tasks results in better scheduling efficiency, more consistent delivery of service to callers, higher staff satisfaction. If you’d like to see how InVision Software can benefit your centre, give us a call. Our consultants will be happy to provide a demonstration of the software and work with you to calculate the cost-effectiveness and potential return on investment of InVision Software solutions.

Contact Information

InVision Software Ltd.
Chris Dealy
Sales Director
Baskerville House
Centenary Square, Birmingham B1 2 ND
United Kingdom
Phone: +44 7917 772365
E-mail: chris.dealy@invisionwfm.com
Web: www.invisionwfm.com
About the Author

Penny Reynolds is a Co-Founder of The Call Center School where she heads up curriculum development. She develops and teaches courses on a wide variety of call centre topics, including workforce management, performance measurement, and call centre technologies. Penny is a popular speaker at industry conferences and association meetings and a frequent contributor to industry trade publications. She is the author of several books, including Call Center Staffing: The Practical Guide to Workforce Management, Business School Essentials for Call Center Leaders, Call Center Supervision: The Complete Guide to Managing Frontline Staff, Power Phrasing, and The Power of One. She has also co-authored the five textbooks for University of Phoenix’s call centre certification program. An honors graduate of Vanderbilt University, Penny was one of the first recipients of Call Center Magazine’s prestigious Call Center Pioneer award.

The Call Center School, LLC
Penny Reynolds
Co-Founder
568 Grant Highway
Lebanon, TN 37090
USA

Phone: +1 615 812 8410
E-mail: penny.reynolds@thecallcenterschool.com
Web: www.thecallcenterschool.com