The Debate: How Should Organisations Be Using Artificial Intelligence?


In recent days we have seen an escalation in the war of words between Elon Musk and Mark Zuckerberg surrounding the dangers of artificial intelligence (AI).

Musk worries that, if unregulated, AI will grow and grow in influence and could ultimately pose an existential threat to humanity. As a result, he is advocating that governments need to start regulating the technology.

Zuckerberg, on the other hand, disagrees on the need for more regulation and is more sanguine about the prospects of AI.

Now, this is a macro-level argument about the prospects and nature of AI. And, it is one that is set to rumble on and on.

But there is a more micro-level challenge facing firms that are using AI technology right now.

This is particularly relevant for organisations that are using AI to enhance their customer experience by making it more personalised, making their service more proactive or using algorithms and data sets to predict the most likely outcome of a particular situation, the next best offer or next best action for a customer.

The challenge was articulated by Dr Rob Walker, Vice President, Decision Management and Analytics at Pegasystems, during a keynote speech at Pegaworld that took place in the early part of June in Las Vegas.

In his keynote, Rob explained that there are two types of AI. The first is Transparent AI, a system built around a machine-learning algorithm that can explain how it works and can be audited.

The second is Opaque AI, a system, again built around a machine-learning algorithm, that is more ‘black box’ in nature and one that cannot intrinsically explain itself and cannot be audited.

Now, Opaque AI systems tend to be more powerful than Transparent AI systems, given that requiring a system to have to ‘explain’ itself and to be auditable can tend to act as a ‘brake’ or restraint on its effectiveness and analytical ‘horse-power’. And, given their power, they are likely to prove increasingly popular amongst organisations that are searching for tools and technology to help them differentiate themselves and deliver better business and customer outcomes.

But Opaque AI comes with its own set of risks. It may be more powerful than a transparent system but, because of its nature, we are also limited in understanding what sort of attitudes it will develop and what outputs it might generate.

Remember Microsoft’s racist AI chatbot? Or How Target Figured Out A Teen Girl Was Pregnant Before Her Father Did? We don’t want a repeat of those incidences, right?

As such, companies need to make conscious choices about what type of AI technology they want to use (Transparent or Opaque), how they use it and when to use it.

Dr Nicola Millard, Head of Customer Insight & Futures within BT’s Global Services Innovation Team, brings this choice to life in an upcoming whitepaper (Botman vs. Superagent) when she writes:

“The debate extends to robo-advice in the financial services industry, and medical diagnosis. If a person is given a personalised recommendation based on the output of a machine learning algorithm, how is that advice regulated if the learning algorithm can’t show us how it came to that particular conclusion?”

In the face of such challenges, Rob Walker suggests that firms are likely choose to deploy Transparent AI systems in areas that are subject to regulation, compliance and risk management issues.

However, in others they are likely to adopt the use of Opaque AI.

But, given the ‘black box’ nature of Opaque AI, they will need to be accompanied by testing systems that establish the attitudes and biases that the system is developing.

In addition, its outputs will also need to be subject to ‘ethical’ and quality sign-off mechanisms in order to make sure that they comply with existing laws, regulation, brand policies, customer promises and company procedures, etc.

Now, these mechanisms do not need to be markedly different from other established governance, quality policies and procedures that normally exist, but they will need to be updated to take into account of the impact and risks of using this type of AI and then built into existing operations.

Nicola Millard describes the situation very well when she says:

“As with any system, AI is very much a case of ‘garbage in, garbage out’. If we want AI that produces ‘good’ answers, we need to feed it ‘good’ data. We need to be responsible parents, teach it, supervise it, give it a healthy data diet, and work alongside it, rather than leaving it to its own devices.”

However, right now, it is not clear that these type of practices are fully developed or widespread.

But they should be.

To not have them in place risks opening up your organisation, your customer experience and your customers to some potentially damaging and unintended consequences.

This blog post has been re-published by kind permission of Adrian Swinscoe – View the original post

About the author

Adrian Swinscoe has been growing and developing customer-focused large and small businesses for 20 years, in particular how they engage with their customers, build their customer retention and improve service.

His driving passion is helping create, develop and grow businesses that take care of their customers in the best way possible and create great teams to deliver that.

As a result, he helps companies with their business and team performance issues which result in increased profits, sales, better productivity, word of mouth and better service and an overall customer and employee experience.

Read other posts by

Call Centre Helper is not responsible for the content of these guest blog posts. The opinions expressed in this article are those of the author, and do not necessarily reflect those of Call Centre Helper.

Published On: 4th Sep 2017 - Last modified: 5th Sep 2017
Read more about - Industry Insights


Leave a Comment
Leave a Comment

Your email address will not be published. Required fields are marked *

 
css.php